
Neural Networks 21 (2008) 682–697

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet
2008 Special Issue

Reinforcement learning of motor skills with policy gradients
Jan Peters a,b,∗, Stefan Schaal b,c
aMax Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
b University of Southern California, 3710 S. McClintoch Ave – RTH401, Los Angeles, CA 90089-2905, USA
c ATR Computational Neuroscience Laboratory, 2-2-2 Hikaridai, Seika-cho, Soraku-gun Kyoto 619-0288, Japan

a r t i c l e i n f o

Article history:
Received 11 September 2007
Received in revised form
24 February 2008
Accepted 24 February 2008

Keywords:
Reinforcement learning
Policy gradient methods
Natural gradients
Natural Actor-Critic
Motor skills
Motor primitives

a b s t r a c t

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the
principles of learning will be crucial in order to achieve true autonomy in advanced machines like
humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs.
While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from
demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error
improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine
learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to
the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine
two recent research developments on learning motor control in order to achieve this scaling. First, we
interpret the idea of modular motor control by means of motor primitives as a suitable way to generate
parameterized control policies for reinforcement learning. Second,we combinemotor primitiveswith the
theory of stochastic policy gradient learning, which currently seems to be the only feasible framework
for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus
on their applicability to parameterized motor primitives. We compare these algorithms in the context of
motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic
outperforms previous algorithms by at least an order ofmagnitude.We demonstrate the efficiency of this
reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic
robot arm.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In order to ever leave the well-structured environments of
factory floors and research labs, future robots will require the
ability to acquire novel behaviors and motor skills as well as to
improve existing ones based on rewards and costs. Similarly, the
understanding of humanmotor control would benefit significantly
if we can synthesize simulated human behavior and its underlying
cost functions based on insight from machine learning and
biological inspirations. Reinforcement learning is probably the
most general framework in which such learning problems of
computational motor control can be phrased. However, in order to
bring reinforcement learning into the domain of humanmovement
learning, two deciding components need to be added to the
standard framework of reinforcement learning: first, we need a
domain-specific policy representation formotor skills, and, second,
we need reinforcement learning algorithmswhichwork efficiently
∗ Corresponding author at: Max Planck Institute for Biological Cybernetics,
Spemannstr. 38, 72076 Tübingen, Germany.

E-mail address: jan.peters@tuebingen.mpg.de (J. Peters).

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.02.003
with this representation while scaling into the domain of high-
dimensional mechanical systems such as humanoid robots.

Traditional representations of motor behaviors in robotics are
mostly based on desired trajectories generated from spline inter-
polations between points, i.e., spline nodes, which are part of a
longer sequence of intermediate target points on the way to a
final movement goal. While such a representation is easy to
understand, the resulting control policies, generated from a
tracking controller of the spline trajectories, have a variety of
significant disadvantages, including that they are time indexed and
thus not robust towards unforeseen disturbances, that they do not
easily generalize to new behavioral situations without complete
recomputation of the spline, and that they cannot easily be coor-
dinated with other events in the environment, e.g., synchronized
with other sensory variables like visual perception during catch-
ing a ball. In the literature, a variety of other approaches for pa-
rameterizing movement have been suggested to overcome these
problems, see Ijspeert, Nakanishi, and Schaal (2002, 2003) formore
information. One of these approaches proposed using parame-
terized nonlinear dynamical systems as motor primitives, where
the attractor properties of these dynamical systems defined the

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:jan.peters@tuebingen.mpg.de
http://dx.doi.org/10.1016/j.neunet.2008.02.003

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 683
desired behavior (Ijspeert et al., 2002, 2003). The resulting frame-
work was particularly well suited for supervised imitation learn-
ing in robotics, exemplified by examples from humanoid robotics
where a full-body humanoid learned tennis swings or complex
polyrhythmic drumming patterns. One goal of this paper is the ap-
plication of reinforcement learning to both traditional spline-based
representations as well as the more novel dynamic system based
approach.

However, despite the fact that reinforcement learning is the
most general framework for discussing the learning of movement
in general, and motor primitives for robotics in particular,
most of the methods proposed in the reinforcement learning
community are not applicable to high-dimensional systems such
as humanoid robots. Among the main problems are that these
methods do not scale beyond systems with more than three or
four degrees of freedom and/or cannot deal with parameterized
policies. Policy gradient methods are a notable exception to this
statement. Starting with the pioneering work1 of Gullapali and
colleagues (Benbrahim & Franklin, 1997; Gullapalli, Franklin, &
Benbrahim, 1994) in the early 1990s, these methods have been
applied to a variety of robot learning problems ranging from
simple control tasks (e.g., balancing a ball on a beam (Benbrahim,
Doleac, Franklin, & Selfridge, 1992), and pole balancing (Kimura
& Kobayashi, 1998)) to complex learning tasks involving many
degrees of freedom such as learning of complex motor skills
(Gullapalli et al., 1994;Mitsunaga, Smith, Kanda, Ishiguro, &Hagita,
2005; Miyamoto et al., 1995, 1996; Peters & Schaal, 2006; Peters,
Vijayakumar, & Schaal, 2005a) and locomotion (Endo, Morimoto,
Matsubara, Nakanishi, & Cheng, 2005; Kimura & Kobayashi, 1997;
Kohl & Stone, 2004; Mori, Nakamura, aki Sato, & Ishii, 2004;
Nakamura, Mori, & Ishii, 2004; Sato, Nakamura, & Ishii, 2002;
Tedrake, Zhang, & Seung, 2005).

The advantages of policy gradient methods for parameterized
motor primitives are numerous. Among the most important ones
are that the policy representation can be chosen such that it is
meaningful for the task, i.e., we can use a suitable motor primitive
representation, and that domain knowledge can be incorporated,
which often leads to fewer parameters in the learning process
in comparison to traditional value function based approaches.
Moreover, there exist a variety of different algorithms for policy
gradient estimation in the literature, most with rather strong
theoretical foundations. Additionally, policy gradient methods can
be used model-free and therefore also be applied to problems
without analytically known task and reward models.

Nevertheless, many recent publications on applications of
policy gradient methods in robotics overlooked the newest
developments in policy gradient theory and their original roots
in the literature. Thus, a large number of heuristic applications of
policy gradients can be found, where the success of the projects
mainly relied on ingenious initializations and manual parameter
tuning of algorithms. A closer inspection often reveals that the
chosen methods might be statistically biased, or even generate
infeasible policies under less fortunate parameter settings, which
could lead to unsafe operation of a robot. The main goal of this
paper is to discuss which policy gradient methods are applicable
to robotics and which issues matter, while also introducing some
newpolicy gradient learning algorithms that seem tohave superior
1 Note that there has been earlier work by the control community, see e.g., Dyer
and McReynolds (1970), Hasdorff (1976) and Jacobson and Mayne (1970), which
is based on exact analytical models. Extensions based on learned, approximate
models originated in the literature on optimizing government decision policies,
seeWerbos (1979), and have also been applied in control (Atkeson, 1994;Morimoto
& Atkeson, 2003). In this paper, we limit ourselves to model-free approaches as the
most general framework, while future work will address specialized extensions to
model-based learning.
performance over previously suggested methods. The remainder
of this paper will proceed as follows: firstly, we will introduce
the general assumptions of reinforcement learning, discuss motor
primitives in this framework and pose the problem statement of
this paper. Secondly, we will analyze the different approaches
to policy gradient estimation and discuss their applicability to
reinforcement learning of motor primitives. We focus on the
most useful methods and examine several algorithms in depth.
The presented algorithms in this paper are highly optimized
versions of both novel and previously published policy gradient
algorithms. Thirdly, we show how these methods can be applied
to motor skill learning in humanoid robotics and show learning
results with a seven degree of freedom, anthropomorphic SARCOS
Master Arm.

1.1. General assumptions and problem statement

Most robotics domains require the state-space and the action
spaces to be continuous and high dimensional such that learning
methods based on discretizations are not applicable for higher-
dimensional systems. However, as the policy is usually imple-
mented on a digital computer, we assume that we can model the
control system in a discrete-time manner and we will denote the
current time step 2by k. In order to take possible stochasticity of the
plant into account, we denote it using a probability distribution

xk+1 ∼ p (xk+1 |xk,uk) (1)

where uk ∈ RM denotes the current action, and xk, xk+1 ∈ RN

denote the current and the next state respectively.We furthermore
assume that actions are generated by a policy

uk ∼ πθ (uk |xk) (2)

which is modeled as a probability distribution in order to
incorporate exploratory actions; for some special problems, the
optimal solution to a control problem is actually a stochastic
controller, see e.g., Sutton, McAllester, Singh, and Mansour (2000).
The policy is parameterized by some policy parameters θ ∈ RK

and assumed to be continuously differentiable with respect to its
parameters θ . The sequence of states and actions forms a trajectory
(also called history or roll-out) denoted by τ = [x0:H,u0:H] where H
denotes the horizon, which can be infinite. At each instant of time,
the learning system receives a reward denoted by r (xk,uk) ∈ R.

The general goal of policy gradient reinforcement learning is to
optimize the policy parameters θ ∈ RK so that the expected return

J(θ) =
1
aΣ

E

{
H∑

k=0
akrk

}
(3)

is optimized where ak denote time-step-dependent weighting
factors and aΣ is a normalization factor in order to ensure that
the normalized weights ak/aΣ sum up to one. We require that the
weighting factors fulfill al+k = alak in order to be able to connect to
the previous policy gradient literature; examples are the weights
ak = γk for discounted reinforcement learning (where γ is in [0, 1])
where aΣ = 1/(1 − γ); alternatively, they are set to ak = 1 for the
average reward case where aΣ = H. In these cases, we can rewrite
a normalized expected return in the form

J(θ) =

∫
X
dπ(x)

∫
U
π(u|x)r(x,u)dxdu (4)
2 Note, that throughout this paper, wewill use k and l for denoting discrete steps,
m for update steps and h for the current vector element, e.g., θh denotes the hth
element of θ .

684 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
as used in Sutton et al. (2000), where dπ(x) = a−1
Σ

∑
∞

k=0 akp(xk = x)
is the weighted state distribution.3

In general, we assume that for each considered policy πθ , a
state-value function Vπ(x, k), and the state-action value function
Qπ (x,u, k) exist and are given by

Vπ(x, k) = E

{
H∑
l=k

alrl

∣∣∣∣∣ xk = x
}

, (5)

Qπ (x,u, k) = E

{
H∑
l=k

alrl

∣∣∣∣∣ xk = x,uk = u
}

. (6)

In the infinite horizon case, i.e., for H → ∞, we write Vπ(x)
and Qπ (x,u) as these functions have become time-invariant. Note,
that we can define the expected return in terms of the state-value
function by

J(θ) =

∫
X
p (x0) Vπ(x0, 0)dx0, (7)

where p (x0) is the probability of x0 being the start-state.Whenever
wemake practical use of the value function, we assume thatwe are
given “good” basis functions φ(x) so that the state-value function
can be approximated with linear function approximation Vπ(x) =

φ(x)Tvwith parameters v ∈ Rc in an approximately unbiased way.

1.2. Motor primitive policies

In this section, we first discuss how motor plans can be
represented and then how we can bring these into the standard
reinforcement learning framework. For this purpose, we consider
two forms of motor plans, i.e., (1) spline-based trajectory plans
and (2) nonlinear dynamic motor primitives introduced in Ijspeert
et al. (2002). Spline-based trajectory planning is well known in the
robotics literature, see e.g., Miyamoto et al. (1996) and Sciavicco
and Siciliano (2007). A desired trajectory is represented as
connected pieces of simple polynomials, e.g., for third-order
splines, we have

qd,n (t) = θ0n + θ1nt + θ2nt
2
+ θ3nt

3 (8)

in t ∈ [tn−1, tn] under the boundary conditions of

qd,n−1 (tn) = qd,n (tn) and q̇d,n−1 (tn) = q̇d,n (tn) .

A given tracking controller, e.g., a PD control law or an inverse
dynamics controller, ensures that the trajectory is realized
accurately. Thus, a desired movement is parameterized by its
spline nodes and the duration of each spline node. These
parameters can be learned from fitting a given trajectory with
a spline approximation algorithm (Wada & Kawato, 1994), or
by means of optimization or reinforcement learning (Miyamoto
et al., 1996). We call such parameterized movement plans motor
primitives.

For nonlinear dynamic motor primitives, we use the approach
developed in Ijspeert et al. (2002). These dynamicmotor primitives
can be seen as a type of central pattern generator which is
particularly well suited for learning as it is linear in the parameters
and are invariant under rescaling. In this approach, movement
plans (qd, q̇d) for each degree of freedom (DOF) of the robot
are represented in terms of the time evolution of the nonlinear
dynamical systems

q̈d = f (qd, z, g, τ, θ) (9)
3 In most cases, e.g., for ak = γk , this distribution is a multi-modal mixture
distribution even if the distribution p (xk = x) is unimodal. Only for ak = 1, the
state weighted distribution dπ (x) will converge to the stationary distribution.
where (qd, q̇d) denote the desired position and velocity of a joint,
z the internal state of the dynamic system which evolves in
accordance to a canonical system z̈ = fc(z, τ), g the goal (or
point attractor) state of each DOF, τ the movement duration
shared by all DOFs, and θ the open parameters of the function f .
In contrast to splines, formulating movement plans as dynamic
systems offers useful invariance properties of a movement plan
under temporal and spatial scaling, as well as natural stability
properties — see Ijspeert et al. (2002) for a discussion. Adjustment
of the primitives using sensory input can be incorporated by
modifying the internal state z of the system as shown in the
context of drumming (Pongas, Billard, & Schaal, 2005) and biped
locomotion (Nakanishi et al., 2004; Schaal, Peters, Nakanishi, &
Ijspeert, 2004). The equations used in order to create Eq. (9) are
given in the Appendix. The original work in Ijspeert et al. (2002)
demonstrated how the parameters θh can be learned to match
a template trajectory by means of supervised learning — this
scenario is, for instance, useful as the first step of an imitation
learning system. Here, we will add the ability of self-improvement
of the movement primitives in Eq. (9) by means of reinforcement
learning, which is the crucial second step in imitation learning.

The systems in Eqs. (8) and (9) are point-to-point movements,
i.e., such tasks are rather well suited for the introduced episodic
reinforcement learning methods. In both systems, we have access
to at least 2nd derivatives in time, i.e., desired accelerations,
which are needed for model-based feedforward controllers. In
order to make the reinforcement framework feasible for learning
with motor primitives, we need to add exploration to the
respective motor primitive framework, i.e., we need to add a small
perturbation ε ∼ N

(
0,σ2) to the desired accelerations, such that

the nominal target output q̈d becomes the perturbed target output
¨̂qd = q̈d + ε. By doing so, we obtain a stochastic policy

π(¨̂qd|q̈d) =
1

√
2πσ2

exp
(
−

(¨̂qd − q̈d)2

2σ2

)
. (10)

This policy will be used throughout the paper. It is particularly
practical as the exploration can be easily controlled through only
one variable σ.

2. Policy gradient approaches for parameterized motor primi-
tives

The general goal of policy optimization in reinforcement
learning is to optimize the policy parameters θ ∈ RK so that the
expected return J(θ) is maximal. For motor primitive learning in
robotics,we require that any change to the policy parameterization
has to be smooth as drastic changes can be hazardous for the
robot and its environment. Also, it would render initializations
of the policy based on domain knowledge or imitation learning
useless, as these would otherwise vanish after a single update
step (Schaal, 1997). Additionally, we need to guarantee that the
policy is improved in the update steps at least on average which
rules out greedy value function basedmethods with approximated
value functions, as these methods are frequently problematic in
regard of this property (Kakade, 2003). For these reasons, policy
gradient methods, which follow the steepest descent on the
expected return, are currently the most suitable method for motor
learning. These methods update the policy parameterization at
time step m according to the gradient update rule

θm+1 = θm + αm ∇θ J|θ=θm , (11)

where αm ∈ R+ denotes a learning rate. If the gradient estimate is
unbiased and learning rates fulfill

∞∑
m=0

αm > 0 and
∞∑

m=0
α2

m = 0, (12)

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 685
Table 1
General setup for policy gradient reinforcement learning

input: initial policy parameterization θ0 .

1 repeat
2 obtain policy gradient g from estimator (see Tables 2–6)
3 update policy θm+1 = θm + αmg.
4 until policy parameterization θm ≈ θm+1 converges

return: optimal policy parameters θ∗
= θm+1 .

the learning process is guaranteed to converge to at least a local
minimum. The general setup is shown in Table 1.

The main problem in policy gradient methods is obtaining a
good estimator of the policy gradient ∇θ J|θ=θm . Traditionally, peo-
ple have used deterministic model-based methods for obtaining
the gradient (Dyer & McReynolds, 1970; Hasdorff, 1976; Jacobson
& Mayne, 1970). However, in order to become autonomous we
cannot expect to be able to model every detail of the robot and
environment appropriately. Therefore, we need to estimate the
policy gradient only from data generated during the execution of
a task, i.e., without the need for a model. In this section, we will
study different approaches and discuss which of these are useful
in robotics. The literature on policy gradient methods has yielded
a variety of estimation methods over the last years. The most
prominent approaches, which have been applied to robotics are
finite-difference and likelihood ratiomethods,morewell known as
REINFORCE methods in reinforcement learning.

2.1. Finite-difference methods

Finite-difference methods are among the oldest policy gradient
approaches dating back to the 1950s; they originated from the
stochastic simulation community and are quite straightforward
to understand. The policy parameterization is varied by small
increments 1θ i and for each policy parameter variation θm + 1θ i
roll-outs are performed which generate estimates Ĵi = J(θm +1θ i)
and ∆Ĵi ≈ J(θm + 1θ i) − Jref of the expected return. There are
different ways of choosing the reference value Jref , e.g. forward-
difference estimators with Jref = J(θm) and central-difference
estimators with Jref = J(θm − 1θ i). The most general way is to
formulate the determination of the reference value Jref and the
policy gradient estimate gFD ≈ ∇θ J|θ=θm as a regression problem
which can be solved by[
gT
FD, Jref

]T
=

(
12T12

)−1
12T Ĵ, (13)

where

12 =

[
1θ1, . . . , 1θ I
1, . . . , 1

]T
, and (14)

Ĵ = [Ĵ1, . . . , ĴI]
T, (15)

denote the I samples. If single parameters are perturbed, this
method is known as the Kiefer–Wolfowitz procedure and if
multiple parameters are perturbed simultaneously, it is known
as Simultaneous Perturbation Stochastic gradient Approximation
(SPSA), see Sadegh and Spall (1997) and Spall (2003) for in-depth
treatment. This approach can be highly efficient in simulation
optimization of deterministic systems (Spall, 2003) or when a
common history of random numbers (Glynn, 1987; Kleinman,
Spall, & Naiman, 1999) is being used (the later trick is known as
the PEGASUSmethod in reinforcement learning, see Ng and Jordan
(2000)), and can get close to a convergence rate of O(I−1/2) (Glynn,
1987). However, when used on a real system, the uncertainties
degrade the performance resulting in convergence rates ranging
between O(I−1/4) and O(I−2/5) depending on the chosen reference
Table 2
Finite-difference gradient estimator

input: policy parameterization θ .

1 repeat
2 generate policy variation1θ i .
3 estimate J(θ +1θ i) ≈ Ĵi =

∑H
k=0 akrk from roll-outs.

4 compute gradient
[
gTFD, Jref

]T
=

(
12T12

)−1
12T Ĵ.

with12T
=

[
1θ1, . . . ,1θ I

1, . . . , 1

]
,

and ĴT = [Ĵ1, . . . , ĴI].
5 until gradient estimate gFD converged.

return: gradient estimate gFD .

value (Glynn, 1987). An implementation of this algorithm is shown
in Table 2.

Finite-difference methods are widely applicable as they do not
require knowledge of the policy and they do not depend on the
differentiability of the policywith respect to the policy parameters.
While these facts do not matter for the case of motor primitive
learning, both can be important in other setups, e.g., a setup where
we only have access to a few selected parameters of the policy in a
complex, unknown system or when optimizing policy parameters
which can only take discrete values.

Due to the simplicity of this approach, finite-difference
methods have been successfully applied to robot motor skill
learning in numerous applications (Kohl & Stone, 2004; Mitsunaga
et al., 2005; Miyamoto et al., 1995, 1996; Tedrake et al., 2005).
However, the straightforward application is not without peril
as the generation of 1θ i requires proper knowledge of the
system, as badly chosen 1θ i can destabilize the policy so that
the system becomes instable and the gradient estimation process
is prone to fail. Even in the field of simulation optimization
where the destabilization of the system is not such a dangerous
issue, the careful generation of the parameter perturbation is
a topic of debate with strong requirements on the generating
process (Sadegh & Spall, 1997). Practical problems often require
that each element of the vector 1θ i has a different order of
magnitude, making the generation particularly difficult. Therefore,
this approach can be applied only under strict human supervision.

2.2. Likelihood ratio methods and REINFORCE

Likelihood ratio methods are driven by an different important
insight. Assume that trajectories τ are generated from a system
by roll-outs, i.e., τ ∼ pθ (τ) = p (τ | θ) with rewards
r(τ) =

∑H
k=0 akrk. In this case, the policy gradient can be

estimated using the likelihood ratio trick, see e.g. Aleksandrov,
Sysoyev, and Shemeneva (1968) and Glynn (1987), or REINFORCE
trick (Williams, 1992). First, from the view of trajectories, the
expected return of a policy can be written as an expectation over
all possible trajectories T:

J (θ) =

∫
T
pθ (τ) r(τ)dτ .

Subsequently, we can rewrite the gradient by

∇θ J (θ) =

∫
T
∇θpθ (τ) r(τ)dτ

=

∫
T
pθ (τ)∇θ log pθ (τ) r(τ)dτ ,

= E
{
∇θ log pθ (τ) r(τ)

}
. (16)

Importantly, the derivative ∇θ log pθ (τ) can be computed without
knowledge of the generating distribution pθ (τ) as

pθ (τ) = p(x0)
H∏

k=0
p (xk+1 |xk,uk)πθ (uk |xk) (17)

686 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
Table 3
General likelihood ratio policy gradient estimator “Episodic REINFORCE” with an
optimal baseline

input: policy parameterization θ .

1 repeat
2 perform a trial and obtain x0:H,u0:H, r0:H
3 for each gradient element gh
4 estimate optimal baseline

bh =

〈(∑H
k=0 ∇θh

logπθ (uk|xk)
)2∑H

l=0 alrl

〉
〈(∑H

k=0 ∇θh
logπθ (uk|xk)

)2〉
5 estimate the gradient element

gh =

〈(∑H
k=0 ∇θh

logπθ (uk |xk)
) (∑H

l=0 alrl − bh
)〉

.

6 end for.
7 until gradient estimate gRF converged.

return: gradient estimate gRF .

implies that

∇θ log pθ (τ) =

H∑
k=0

∇θ logπθ (uk |xk) , (18)

i.e., the derivatives with respect to the control system do not have
to be computed.4 As, in general, the following kind of integral
always yields zero:∫

T
pθ (τ)∇θ log pθ (τ) dτ =

∫
T
∇θpθ (τ) dτ

= ∇θ1 = 0, (19)

a constant baseline can be inserted into the policy gradient
estimate, resulting in the final gradient estimator

∇θ J (θ) = E
{
∇θ log pθ (τ) (r(τ) − b)

}
, (20)

where b ∈ R can be chosen arbitrarily (Williams, 1992) but usually
with the goal to minimize the variance of the gradient estimator.
Note that the baseline was most likely first suggested in Williams
(1992) and is unique to reinforcement learning as it requires
a separation of the policy from the state-transition probability
densities. Therefore, the general path likelihood ratio estimator or
episodic REINFORCE gradient estimator (Williams, 1992) is given
by

gRF =

〈(
H∑

k=0
∇θ logπθ (uk |xk)

)(
H∑

l=0
alrl − b

)〉
, (21)

where 〈f (τ)〉 =
∫

T f (τ)dτ denotes the average over trajectories.
This type of method is guaranteed to converge to the true gradient
at the fastest theoretically possible pace of O(I−1/2) where I
denotes the number of roll-outs (Glynn, 1987) even if the data
are generated from a highly stochastic system. An implementation
of this algorithm is shown in Table 3 together with an optimal
estimator for the baseline.

Besides the theoretically faster convergence rate, likelihood
ratio gradient methods have a variety of advantages in comparison
to finite-differencemethods. As the generation of policy parameter
variations is no longer needed, the complicated control of these
variables can no longer endanger the gradient estimation process.
Furthermore, in practice, already a single roll-out can suffice for an
unbiased gradient estimate (Baxter & Bartlett, 2001; Spall, 2003)
viable for a good policy update step, thus reducing the number of
4 This result makes an important difference: in stochastic system optimization,
finite difference estimators are often preferred as the derivative through system
is required but not known. In policy search, we always know the derivative of
the policy with respect to its parameters and therefore we can make use of the
theoretical advantages of likelihood ratio gradient estimators.
roll-outs needed. Finally, this approach has yielded the most real-
world robot motor learning results (Benbrahim & Franklin, 1997;
Endo et al., 2005; Gullapalli et al., 1994; Kimura & Kobayashi, 1997;
Mori et al., 2004; Nakamura et al., 2004; Peters et al., 2005a). In the
subsequent two sections,wewill strive to explain and improve this
type of gradient estimator.

In the following two sections, wewill strive to give an extensive
overview on the two classes of likelihood ratio policy gradient
methods, ‘vanilla’ policy gradientmethods in Section 3, and natural
policy gradientmethods in Section 4. Themost important part here
is to present the best methods of both classes and, subsequently,
compare them in Section 5.1. The succeeding method will be used
in Section 5.2 for a real robot evaluation.

3. ‘Vanilla’ policy gradient approaches

Despite the fast asymptotic convergence speed of the gradient
estimate, the variance of the likelihood-ratio gradient estimator
can be problematic in theory as well as in practice. This can be
illustrated straightforwardly with an example.

Example 1. When using a REINFORCE estimator with a baseline
b = 0 in a scenario where there is only a single reward of always
the same magnitude, e.g., r (x,u) = c ∈ R for all x,u, then the
variance of the gradient estimate will grow at least cubically with
the length of the planning horizon H as

Var{gRF} = H2c2
H∑

k=0
Var{∇θ logπθ (uk |xk)}, (22)

if Var{∇θ logπθ (uk |xk)} > 0 for all k. Furthermore, it will also
grow quadratically with the magnitude of the reward c. The mean
gradient remains unaltered by the reward magnitude c in this
example as the reward is constant.5

For this reason, we need to address this issue and we
will discuss several advances in likelihood ratio policy gradient
optimization, i.e., the policy gradient theorem/GPOMDP, optimal
baselines and the compatible function approximation.

3.1. Policy gradient theorem and G(PO)MDP

The intuitive observation that future actions do not depend on
past rewards (unless policy changes take place continuously during
the trajectory) can result in a significant reduction of the variance
of the policy gradient estimate. This insight can be formalized as

Exk:l,uk:l
{
∇θ logπθ (ul|xl) rk

}
= Exk:l,uk:(l−1)

{∫
U
∇θ logπθ (ul|xl) dulrk

}
= 0 (23)

as
∫

U ∇θ logπθ (ul|xl) dul = 0 for k < l. This allows two variations
of the previous algorithm which are known as the policy gradient
theorem (Sutton et al., 2000)

gPGT =

〈
H∑

k=0
ak∇θ logπθ (uk |xk)

(
H∑
l=k

al−krl − bk

)〉
,

or G(PO)MD (Baxter & Bartlett, 2001)

gGMDP =

〈
H∑

l=0

(
l∑

k=0
∇θ logπθ (uk |xk)

)
(alrl − bl)

〉
.

5 In the general case, the gradient length scales linearly in the rewardmagnitude
and, thus, learning rates which include the inverse of the expected return can be
very efficient (Peters, 2007).

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 687
While these algorithms look different, they are exactly equivalent in
their gradient estimate,6 i.e.,

gPGT = gGMPD, (24)

which is a direct result from the summation theorem (Vachenauer,
Rade, & Westergren, 2000) and from the fact that they both
can be derived from REINFORCE. The G(PO)MDP formulation
has previously been derived in the simulation optimization
community (Glynn, 1990). An implementation of this algorithm is
shown together with the optimal baseline in Table 4.

These two forms originally puzzled the community as they
were derived from two separate points of view (Baxter & Bartlett,
2001; Sutton et al., 2000) and seemed to be different on first
inspection. While their equality is natural when taking the path-
based perspective, we will obtain the forms proposed in the
original sources in a few steps. First, let us note that in gPGT the term∑

∞

l=k al−krl in the policy gradient theorem is equivalent to a Monte
Carlo estimate of the value function Qπ (x,u). Thus, we obtain

gPGT =

∫
X
dπ (x)

∫
U
∇θπθ (u |x) (Qπ (x,u) − b (x)) dudx,

for normalized weightings with infinite horizons (e.g., using the
discounted or the average reward case). This form has a significant
advantage over REINFORCE-like expressions, i.e., the variance does
not growwith the planninghorizon if a good estimate ofQπ (x,u) is
given, e.g., by using traditional value function methods. Thus, the
counterexample from Example 1 does no longer apply. Similarly,
the term

∑l
k=0 ∇θ logπθ (uk |xk) becomes the log-derivative of the

distribution of states µπk (x) = p (x = xk) at step k in expectation,
i.e.,

∇θ log dπ (x) =

H∑
l=0

al∇θ logµπk (x)

=

H∑
l=0

al
l∑

k=0
∇θ logπθ (uk |xk) , (25)

which then can be used to rewrite the G(PO)MDP estimator into
state-space form, i.e.,

gGMDP =

∫
X

∫
U
(πθ (u |x)∇θd

π (x)

+ dπ (x)∇θπθ (u |x)) (r (x,u) − b) dudx. (26)

Note that this form only allows a baseline which is independent of
the state unlike the policy gradient theorem. When either of the
state-action value function or the state distribution derivative can
be easily obtained by derivation or estimation, the variance of the
gradient can be reduced significantly. Without a formal derivation
of it, the policy gradient theorem has been applied in Gullapalli
(1990, 1992) and Kimura and Kobayashi (1997) using estimated
value functionsQπ (x,u) instead of the term

∑H
l=k alrl and a baseline

bk = Vπ (xk, k). Note that the version introduced in Kimura and
Kobayashi (1997) is biased7 and does not correspond to the correct
gradient unlike the one in Gullapalli (1990, 1992).

Note that the formulation over paths can be used in a
more general fashion than the state-action form, e.g., it allows
derivations for non-stationary policies, rewards and systems, than
the state-action formulation in the paragraph above. However, for
some results, it is more convenient to use the state-action based
formulation and there we have made use of it.
6 Note that Baxter and Bartlett (2001) additionally add an eligibility trick for
reweighting trajectory pieces. This trick can be highly dangerous in robotics; it can
be demonstrated that even in linear-quadratic regulation, this trick can result in
convergence to the worst possible policies for small planning horizons (i.e., small
eligibility rates).

7 See Peters (2007) for more information.
Table 4
Specialized likelihood ratio policy gradient estimator “G(PO)MDP”/Policy Gradient
with an optimal baseline

input: policy parameterization θ .

1 repeat
2 perform trials and obtain x0:H,u0:H, r0:H
3 for each gradient element gh
4 for each time step k

estimate baseline for time step k by

bhk =

〈(∑k
κ=0 ∇θh

logπθ (uκ|xκ)
)2

akrk

〉
〈(∑k

κ=0 ∇θh
logπθ (uκ|xκ)

)2〉
5 end for.
6 estimate the gradient element

gh =

〈∑H
l=0

(∑l
k=0 ∇θh

logπθ (uk |xk)
) (

alrl − bhl

)〉
.

7 end for.
8 until gradient estimate gGMDP converged.

return: gradient estimate gGMDP .

3.2. Optimal baselines

Above, we have already introduced the concept of a baseline
which can decrease the variance of a policy gradient estimate by
orders of magnitude. Thus, an optimal selection of such a baseline
is essential. An optimal baseline minimizes the variance σ2

h =

Var {gh} of each element gh of the gradient g without biasing the
gradient estimate, i.e., violating E{g} = ∇θ J. This can be phrased as
having a separate baseline bh for every coefficient of the gradient,8
i.e., we have

min
bh
σ2
h = Var {gh} , (27)

s.t. E{gh} = ∇θh J. (28)

As the variance can generally be expressed as σ2
h = E

{
g2h
}
−(∇θh J)

2,
and due to the application of Jensen’s inequality

min
bh
σ2
h ≥ E

{
min
bh

g2h

}
−
(
∇θh J

)2
, (29)

we know that we only need to determine minbh g
2
h on our samples.

When differentiating

g2h =

〈(
H∑

k=0
∇θh logπθ (uk |xk)

(
H∑

l=0
alrl − b

))2〉
and solving for the minimum, we obtain the optimal baseline for
each gradient element gh can always be given by

bh =

〈(
H∑

k=0
∇θh logπθ (uk |xk)

)2 H∑
l=0

alrl

〉
〈(

H∑
k=0

∇θh logπθ (uk |xk)

)2〉
for the general likelihood ratio gradient estimator, i.e., Episodic
REINFORCE. The algorithmic form of the optimal baseline is shown
in Table 3 in line 4. If the sums in the baselines are modified
appropriately, we can obtain the optimal baseline for the policy
gradient theorem or G(PO)MPD. We only show G(PO)MDP in this
paper in Table 4 as the policy gradient theorem is numerically
equivalent.

The optimal baseline which does not bias the gradient in
Episodic REINFORCE can only be a single number for all trajectories
8 A single baseline for all parameters can also be obtained and is more common
in the reinforcement learning literature (Greensmith, Bartlett, & Baxter, 2001, 2004;
Lawrence, Cowan, & Russell, 2003; Weaver & Tao, 2001a, 2001b; Williams, 1992).
However, such a baseline is of course suboptimal.

688 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
and in G(PO)MPD it can also depend on the time step (Peters,
2007). However, in the policy gradient theorem it can depend on
the current state and, therefore, if a good parameterization for
the baseline is known, e.g., in a generalized linear form b (xk) =

φ (xk)
T ω, this can significantly improve the gradient estimation

process. However, the selection of the basis functions φ (xk) can
be difficult and often impractical in practice. See Greensmith et al.
(2001, 2004), Lawrence et al. (2003), Weaver and Tao (2001a,
2001b) and Williams (1992), for more information on this topic.

3.3. Compatible function approximation

As we previously discussed, the largest source of variance
in the formulation of the policy gradient theorem is the state-
action value function Qπ(x,u), especially if the function Qπ(x,u)
is approximated by roll-outs as in this context. The natural
alternative of using approximate value functions is problematic as
these introduce bias in the presence of imperfect basis function in
the function approximator. However, as demonstrated in Sutton
et al. (2000) and Konda and Tsitsiklis (2000) the term Qπ(x,u) −

bπ(x) can be replaced by a compatible function approximation

fπw (x,u) = (∇θ logπ(u|x))Tw ≡ Qπ(x,u) − bπ(x), (30)

parameterized by the vectorw,without affecting the unbiasedness
of the gradient estimate and irrespective of the choice of the
baseline bπ(x). However, as mentioned in Sutton et al. (2000), the
baseline may still be useful in order to reduce the variance of the
gradient estimate when gPGT is approximated from samples. Thus,
we derive an estimate of the policy gradient as

∇θ J(θ) =

∫
X
dπ(x)

∫
U
∇θπ(u|x)∇θ logπ(u|x)Tdudxw

=

∫
X
dπ(x)Ĝθ (x)dxw = Gθw (31)

where ∇θπ(u|x) = π(u|x)∇θ logπ(u|x). Since π(u|x) is chosen by
the user, even in sampled data, the integral

Ĝθ (x) =

∫
U
π(u|x)∇θ logπ(u|x)∇θ logπ(u|x)Tdu

can be evaluated analytically or empirically without actually
executing all actions. It is also noteworthy that the baseline does
not appear in Eq. (31) as it integrates out, thus eliminating the need
to find an optimal selection of this open parameter. Nevertheless,
the estimation of Gθ =

∫
X dπ(x)Ĝθ (x)dx is still expensive since

dπ(x) is not known.
An important observation is that the compatible function

approximation fπw(x,u) is mean-zero w.r.t. the action distribution,
i.e.,∫

U
π(u|x)fπw(x,u)du = wT

∫
U
∇θπ(u|x)du = 0,

since from
∫

U π(u|x)du = 1, differentiation w.r.t. to θ results
in

∫
U ∇θπ(u|x)du = 0. Thus, fπw (x,u) represents an advantage

function Aπ(x,u) = Qπ(x,u) − Vπ(x) in general. The advantage
function cannot be learned with TD-like bootstrapping without
knowledge of the value function as the essence of TD is to
compare the value Vπ(x) of the two adjacent states — but
this value has been subtracted out in Aπ(x,u). Hence, a TD-
like bootstrapping using exclusively the compatible function
approximator is impossible. As an alternative, Konda and Tsitsiklis
(2000) and Sutton et al. (2000) suggested approximating fπw (x,u)

from unbiased estimates Q̂π(x,u) of the action value function,
e.g., obtained from roll-outs and using least-squares minimization
between fw and Q̂π. While possible in theory, one needs to
realize that this approach implies a function approximation
problemwhere the parameterization of the function approximator
only spans a much smaller subspace than the training data —
e.g., imagine approximating a quadratic function with a line. In
practice, the results of such an approximation depends crucially
on the training data distribution and has thus unacceptably high
variance — e.g., fitting a line to only data from the right branch
of a parabola, the left branch, or data from both branches. In the
next section, we will see that there are more suitable ways to
estimate the compatible function approximation (Section 4.1) and
that this compatible function approximation has a specialmeaning
(Section 4.2).

4. Natural Actor-Critic

Despite all the advances in the variance reduction of policy
gradient methods, partially summarized above, these methods
still tend to perform surprisingly poorly. Even when applied
to simple examples with rather few states, where the gradient
can be determined very accurately, they turn out to be quite
inefficient — thus, the underlying reason cannot solely be the
variance in the gradient estimate but rather must be caused by
the large plateaus in the expected return landscape where the
gradients are small and often do not point directly towards the
optimal solution as demonstrated in Example 2. Thus, we are now
turning to a second class of likelihood ratio gradient methods next
to ‘vanilla’ policy gradient methods. Similarly as in supervised
learning, the steepest ascentwith respect to the Fisher information
metric (Amari, 1998), called the ‘natural’ policy gradient, turns out
to be significantly more efficient than normal gradients for such
plateaus, as illustrated in Example 2.

Example 2. The classical example of linear-quadratic regulation
is surprisingly hard with ‘vanilla’ policy gradient approaches. In
this problem, we have a linear system with Gaussian noise xt+1 ∼

N
(
Axt + But,σ

2
x

)
, a linear policy with Gaussian exploration ut ∼

N (θ1xt, θ2) and a quadratic reward rt = −Qx2t − Ru2t . Traditionally
‘vanilla’ policy gradient approaches decrease the exploration rate
θ2 very fast and, thus, converge slowly towards the optimal
solution as illustrated in Fig. 1(a). The reason is that a decrease
of exploration has a stronger immediate effect on the expected
return. Thus, if both parameters are seen as independent (as
indicated by the circles), the plateau at zero exploration will result
in the very slow convergence. If we can reweight the parameters,
we could go along some directions faster than along others as
indicated by the ellipses in Fig. 1(b). This reweighting can balance
exploration and exploitation, resulting in faster convergence to the
optimum. It is accomplished through the natural policy gradient.

This natural policy gradient approach was first suggested for
reinforcement learning as the ‘average natural policy gradient’
in Kakade (2002), and subsequently shown to be the true natural
policy gradient (Bagnell & Schneider, 2003; Peters, Vijayakumar,
& Schaal, 2003). In this paper, we take this line of reasoning one
step further by introducing the Natural Actor-Critic which inherits
the convergence guarantees from gradient methods. Several
properties of the natural policy gradient are worth highlighting
before investigating some of the relevant derivations:

– Convergence to a local minimum is guaranteed, see Amari
(1998).

– By choosing a more direct path to the optimal solution in pa-
rameter space, the natural gradient has, from empirical obser-
vations, faster convergence and avoids premature convergence
of ‘vanilla gradients’ (see Fig. 1).

– The natural policy gradient can be shown to be covariant,
i.e., independent of the coordinate frame chosen for expressing
the policy parameters, see Peters, Vijayakumar, and Schaal
(2005b).

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 689
(a) Vanilla policy gradient. (b) Natural policy gradient.

Fig. 1. The classical example of LQR can be used to illustrate why ‘vanilla’ policy gradients reduce the exploration to zero while natural policy gradients go for the optimal
solution. The main difference is how the two approaches punish the change in parameters, i.e., the distance between current and next policy parameters. This distance is
indicated by the blue ellipses in the contour plot while the dashed lines show the expected return. Obtaining a gradient then corresponds to finding a vector pointing from
the center of the ellipses to the location with maximum expected return on the ellipse. A vanilla policy gradient (a) considers a change in all parameters as equally distant,
thus, it is a search for a maximum on a circle while the natural gradient (b) uses scales determined by the Fisher information which results in a reduction in exploration.
The slower reduction in exploration results into a faster convergence to the optimal policy. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
10 The value dKL
(
pθ , pθ+1θ

)
can also be seen as the loss of information resulting

from a policy change1θ . Thus, we could alternatively formulate the problem as the
maximization of () α
– As the natural gradient analytically averages out the influence
of the stochastic policy (including the baseline of the function
approximator), it requires fewer data points for a good gradient
estimate than ‘vanilla gradients’.

4.1. Motivation

One of the main reasons for using policy gradient methods
is that we intend to make just a small change 1θ to the policy
πθ while improving the policy. However, the meaning of small
is ambiguous. When using the Euclidian metric of

√
1θT1θ , then

the gradient is different for every parameterization θ of the
policy πθ even if these parameterizations are related to each
other by a linear transformation (Kakade, 2002), often resulting
in unnaturally slow learning even when higher-order gradient
methods were employed (Baxter, Bartlett, & Weaver, 2001; Berny,
2000, chp 14; Kakade, 2001). This problem poses the question
whether we can achieve a covariant gradient descent, i.e., gradient
descent with respect to an invariant measure of the closeness
between the current policy and the updated policy based upon
the distribution of the paths generated by each of these. In
statistics, a variety of distance measures for the closeness of
two distributions (e.g., pθ (τ) and pθ+1θ (τ)) have been suggested,
e.g., the Kullback–Leibler divergence9 dKL (pθ (τ) ‖ pθ+1θ (τ)), the
Hellinger distance dHD and others (Su & Gibbs, 2002). Many of
these distances (e.g., the previously mentioned ones) can be
approximated by the same second-order Taylor expansion, i.e., by

dKL (pθ (τ) ‖ pθ+1θ (τ)) ≈
1
2
1θTFθ1θ, (32)

where

Fθ =

∫
T
pθ (τ)∇ log pθ (τ)∇ log pθ (τ)T dτ

=

〈
∇ log pθ (τ)∇ log pθ (τ)T

〉
(33)

is known as the Fisher information matrix. Let us assume that we
fix the amount of change in our policy using the step-size ε. We
9While being ‘the natural way to think about closeness in probability
distributions’ (Balasubramanian, 1997), this measure is technically not a metric as
it is not commutative.
then have a restricted step-size gradient descent problem (Fletcher
& Fletcher, 2000). Thus, we have an optimization problem

max
∆θ

J (θ +1θ) ≈ J (θ) +1θT∇θ J, (34)

s.t. ε = dKL (pθ (τ) ‖ pθ+1θ (τ)) ≈
1
2
1θTFθ1θ,

(where ε = const is constant) which is illustrated in Fig. 1 and has
the solution

1θ = αnF−1
θ ∇θ J (35)

with αn = [ε(∇J(θ)TF−1
θ ∇J(θ))−1

]
1/2, see Peters (2007) for

derivations.10The direction 1θ is called the natural gradient
∇̃θ J(θ) = 1θ/αn as introduced in Amari (1998). It is not necessary
to use the learning rate αn and it can be replaced by a constant
learning rate as it does not affect the gradient direction.

This type of a gradient is known as Natural Policy Gradients
and has its separate origin in supervised learning (Amari, 1998).
It was first suggested in the context of reinforcement learning
in Kakade (2002) and has been explored in greater depth in Bagnell
and Schneider (2003), Peters et al. (2003) and Peters et al. (2005a).
The strongest theoretical advantage of this approach is that its
performance no longer depends on the parameterization of the
policy and it is therefore safe to use for arbitrary policies.11 In
practice, the learning process converges significantly faster inmost
practical cases and requires less manual parameter tuning of the
learning algorithm.

4.2. Connection to the compatible function approximation

Up to this point, we have left open the deciding question how
to determine the Fisher information matrix. In the first work
on natural policy gradients (Kakade, 2002), it appeared that this
J (θ +1θ) − αdKL pθ , pθ+∆θ ≈ J (θ) +1θT∇θ J − 2
1θTFθ1θ,

with respect to ∆θ which obviously has the same solution except to the freely
selectable trade-off factor or forgetting rate α.
11 There are a variety of interesting properties attributed to the natural policy

gradient methods which are explored in Peters et al. (2005a).

690 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
question could not be answered straightforwardly; however this
questionwas largely answered in subsequentwork simultaneously
by Bagnell and Schneider (2003) and Peters et al. (2003, 2005a).
We summarize our results from Peters et al. (2003) and outline the
derivation of Fisher information of paths here. InMoon and Stirling
(2000), we can find the well-known lemma that by differentiating∫

T p(τ)dτ = 1 twice with respect to the parameters θ , we can
obtain∫

T
p(τ)∇2

θ log p(τ)dτ = −

∫
T
∇θp(τ)∇θ log p(τ)Tdτ

for any probability density function p(τ). Using Eqs. (17) and (18),
we can obtain by differentiation

∇
2
θ log p (τ 0:H) =

H∑
k=1

∇
2
θ logπ (uk |xk) . (36)

Using the relationship above and Eq. (36), and the definition of
the Fisher informationmatrix (Amari, 1998), we can determine the
Fisher information matrix of paths for the average reward case in
sample notation, i.e,

Fθ = −

〈
∇

2
θ log p(τ 0:H)

〉
,

= −

〈
H∑

k=0
∇

2
θ logπ (uH |xH)

〉
,

= −

∫
X
dπH(x)

∫
U
π(u|x)∇2

θ logπ(u|x)dudx,

= Gθ , (37)

where dπH(x) =
∑H

k=0 p (xk = x) denotes the distribution of
states along the trajectory. Similarly, if we replace p(τ 0:H) by
a weighted path distribution pγ(τ 0:n) = p(τ 0:n)

∑H
l=0 alIxi,ui , we

see that ∇
2
θ log p (τ 0:n) = ∇

2
θ log pγ(τ 0:n). Thus, the proof above

generalizes to reweighted path distributions, i.e., we have dπH(x) =∑H
k=0 akp (xk = x). Thus, we can estimate the Fisher information

matrix with

Fθ =

〈
H∑

l=0
al∇θ logπ(ul|xl)∇θ logπ(ul|xl)

T

〉
(38)

as we have shown in Peters et al. (2003). These results imply the
equality of the matrix Gθ and the Fisher information Fθ of paths,
i.e., we have

Fθ = Gθ . (39)

Therefore, we have demonstrated that Fθ is indeed a true Fisher
information matrix and does not have to be interpreted as the
‘average’ of the point Fisher information matrices (Kakade, 2002).
Eqs. (37) and (35) combined imply that the natural gradient can be
computed as

∇̃θ J(θ) = G−1
θ Fθw = w, (40)

since Fθ = Gθ . Therefore we only need estimate w and not Gθ . The
resulting policy improvement step is thus significantly simplified
to become θ i+1 = θ i + αw where α denotes a learning rate.

4.3. Natural actor-critic algorithms

We are now in the position to transform the insights from the
previous sections into working algorithms, based on the idea of
actor-critic methods (Barto, Sutton, & Anderson, 1983). The critic
evaluates the current policy π in order to provide the basis for an
actor improvement, i.e., the change ∆θ of the policy parameters.
As we are interested in natural policy gradient updates ∆θ =

αw, we wish to employ the compatible function approximation
fπw (x,u) from Section 3.3 for formulating the critic. In Section 3.3,
we had realized that this function was hard to learn as it could
only represent an impoverished version of the state-action value
function. In order to remedy this situation we will derive more
useful estimators from two different points of view, i.e., the state-
action based point of view and the episodic roll-out based point of
view. Both rely on the assumption of knowing an appropriate basis
function representation of the critic’s value function, although, as
explained below, this assumption is easily fulfilled for the episodic
case.

We observe thatwe canwrite the Bellman equations in terms of
the advantage function and the state-value function (e.g., see Baird
(1993))

Qπ(x,u) = Aπ(x,u) + Vπ(x)

= r (x,u) + γ

∫
X
p(x′

|x,u)Vπ(x′)dx′. (41)

Inserting Aπ(x,u) = fπw (x,u) and an appropriate basis function
representation of the value function as Vπ(x) = φ(x)Tv, we can
rewrite the Bellman equation (41), as a set of linear equations

∇θ logπ(ut|xt)
Tw + φ(xt)

Tv = r(xt,ut)

+ γφ(xt+1)
Tv + ε(xt,ut, xt+1) (42)

where ε(xt,ut, xt+1) denotes a mean-zero error term, due to
the stochastic policy in (41). We call algorithms that make use
of Eq. (42) to obtain the natural gradient Natural Actor-Critic
Algorithms.

The state-action based point of view of actor-critic algorithms
and its difficulties were discussed in Peters et al. (2005a). Here,
we will focus on the much simpler episodic case, which is also the
most suitable one for our interest in employing motor primitives
for control. Thus, in the next section, we introduce the family of
Episodic Natural Actor-Critic algorithms.

4.3.1. Episodic natural actor-critic
As mentioned in the previous section, the critic in actor-

critic algorithms needs to approximate the value function, which
requires a suitable parameterization, usually in the form of a
linear combination of basis functions. If chosen inappropriately,
the estimate of the natural gradient becomes biased (Peters et al.,
2005a). For the episodic case, however, this problemdoes not exist.
We can derive the episodic natural actor-critic by summing up
Eq. (42) along a sample path to obtain

H∑
t=0

atA
π(xt,ut) = aH+1V

π(xH+1) +

H∑
t=0

atr(xt,ut) − Vπ(x0). (43)

The term multiplied by aH+1 on the right side disappears for the
discounted learning problem as H → ∞ (or H just becomes
large enough) or for episodic tasks (where r(xH,uH) is the final
reward). Therefore each roll-out yields one equationwhich is linear
in the parameters w. If we furthermore assume a single start-
state (or a mean-zero start-state distribution), only one additional
value is required to estimate J0 = Vπ(x0), which corresponds to
estimating the critic’s value at the start-state x0. Therefore, we get
a straightforward regression problem:

H∑
t=0

at∇ logπ(ut, xt)
Tw + J0 =

H∑
t=0

atr(xt,ut) (44)

with exactly dim θ + 1 unknowns. This means that for non-
stochastic tasks we can obtain a natural gradient after dim θ + 1
roll-outs using least-squares regression[
w
J0

]
=

(
9T9

)−1
9TR, (45)

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 691
Table 5
Episodic natural actor-critic with a constant baseline

input: policy parameterization θ .

1 repeat
2 perform M trials and obtain x0:H,u0:H, r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ logπθ (uk |xk).

4 Fisher matrix Fθ =

〈(∑H
k=0 ψk

) (∑H
l=0 ψ l

)T〉
.

Vanilla gradient g =

〈(∑H
k=0 ψk

) (∑H
l=0 alrl

)〉
.

5 Eligibility φ =

〈(∑H
k=0 ψk

)〉
.

6 Average reward r̄ =

〈∑H
l=0 alrl

〉
.

Obtain natural gradient by computing
7 Baseline b = Q

(
r̄ − φTF−1

θ
g
)

with Q = M−1
(
1 + φT

(
MFθ − φφT

)−1
φ

)
8 Natural gradient geNAC1 = F−1

θ (g − φb) .

9 until gradient estimate geNAC1 converged.

return: gradient estimate geNAC1 .

Table 6
Episodic natural actor-critic with a time-variant baseline

input: policy parameterization θ .

1 repeat
2 perform M trials and obtain x0:H,u0:H, r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ logπθ (uk |xk).
4 Fisher matrix Fθ =

〈∑H
k=0

(∑k
l=0 ψ l

)
ψT

k

〉
.

Vanilla gradient g =

〈∑H
k=0

(∑k
l=0 ψ l

)
akrk

〉
,

5 Eligibility matrix8 = [φ1,φ2, . . . ,φK]

with φh =

〈(∑h
k=0 ψk

)〉
.

6 Average reward vector r̄ = [r̄1, r̄2, . . . , r̄K]

with r̄h = 〈ahrh〉.
Obtain natural gradient by computing

7 Baseline b = Q
(
r̄ −8TF−1

θ
g
)

with Q = M−1
(
IK +8T

(
MFθ −88T

)−1
8

)
.

8 Natural gradient gNG = F−1
θ (g −8b) .

9 until gradient estimate geNACn converged.

return: gradient estimate geNACn .

with

9 i =

[
H∑

t=0
at∇ logπ(ut, xt)

T, 1
]

, (46)

Ri =

H∑
t=0

atr(xt,ut). (47)

This regression problem, can be transformed into the form shown
in Table 5 using the matrix inversion lemma, see Peters (2007) for
the derivation.

4.3.2. Episodic natural actor-critic with a time-variant baseline
The episodic natural actor-critic described in the previous

section suffers from one drawback: it does not make use of
intermediate reward data along the roll-out, just like REINFORCE.
An improvement was suggested by G(PO)MDP, which left out
terms which would average out in expectation. One can argue that
this omission of terms is equivalent to using a time-dependent
baseline. We can make use of the same argument and reformulate
the Episodic Natural Actor-Critic which results in the algorithm
shown in Table 6. The advantage of this type of algorithms is two-
fold: the variance of the gradient estimate is often lower and it can
take time-variant rewards significantly better into account.

The time-variant baseline can also be seen in a slightly different
light as it is not only a baseline but at the same time an additional
basis function for the critic. As we argued in the previous section, a
single constant offset suffices as additional basis function as it only
needs to represent the value of the first state (or the average of first
states as the start-state distribution does not dependon the policy).
Obviously, using more basis functions than one constant offset
representing the value of the first step can reduce the variance
of the gradient estimate even further without introducing bias.
We know from the non-episodic Natural Actor-Critic, that if we
had large experience with the system and knew state-dependent
basis functions, we can obtain the much better gradient estimate.
However, we also know that we rarely have these good additional
basis functions. Nevertheless, in some problems, we stay close
to certain kinds of trajectories. In this important case, the state-
dependent basis functions can be replaced by time-dependent or
time-variant basis functions with an equivalent result.

Nevertheless, if we have a time-variant baseline in an episodic
setup, this will increase the complexity of the current setup and
the regression problem has a solution

[
geNACn

r̄

]
=

[
F2 8̄

8̄
T

mIH

]−1 [
g
r̄

]
(48)

where we have a Fisher information matrix estimate Fθ =〈∑H
k=0

(∑k
l=0 ψ l

)
ψT

k

〉
with log-policy derivatives ψk = ∇θ log

πθ (uk |xk), the vanilla gradient estimate g =

〈∑H
k=0

(∑k
l=0 ψ l

)
akrk

〉
,

an eligibility matrix 8 = [φ1,φ2, . . . ,φK] with φh =

〈(∑h
k=0 ψk

)〉
and r̄ = [r̄1, r̄2, . . . , r̄K] with r̄h = 〈ahrh〉. Computing geNACn thus
involves the inversion of a matrix which has the size H+ n, i.e., the
sum of the episode length H and parameters n. Obviously, such
a matrix is prone to be ill-conditioned if inverted with a brute-
force approach and computationally expensive. Nevertheless, as
this matrix contains the identity matrix IH in the largest block of
the matrix, we can reduce the whole problem to an inversion of a
matrix which has the number of policy parameters n as size. When
making use of thematrix inversion theorem (using Harville (2000),
pages 98–101, or Moon and Stirling (2000), pages 258–259; for
details see also Peters (2005)), we can simplify this approach to

w = β1 = F−1
2

(
g − 8̄b

)
= F−1

2 g2, (49)

b = β2 = Q−1
(
r̄ − 8̄

TF−1
2 g

)
, (50)

with Q−1
= m−1(In + 8̄

T
(mF2 − 8̄8̄

T
)−18̄). This algorithm is

depicted in Table 6, and detailed derivations can be found in Peters
(2005).

5. Empirical evaluations

In the previous section, we outlined five model-free policy
gradient algorithms. From our assessment, these are among the
most relevant for learning motor primitives in robotics as they can
be applied without requiring additional function approximation
methods and as they are suitable for episodic settings. These
algorithms were (i) finite-difference gradient estimators, the
vanilla policy gradient estimators (ii) with a constant baseline and
(iii) a time-variant baseline, as well as the episodic Natural Actor-
Critic with both (iv) an offset as additional basis functions and (v)
a time-variant offset as additional basis functions.

In this section, we will demonstrate how the different
algorithms compare in practice. For this purpose, we will show
experiments on both a simulated plant as well as on a real robot
andwewill compare the algorithms for the optimization of control
laws and for learning of motor skills.

692 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
5.1. Comparing policy gradient methods on motor primitives

Our goal in this section is to evaluate policy gradient methods
for the applicability to learning motor primitives. As outlined
in Section 1.2, we are interested in two different kinds of
representations, i.e., a spline-based and dynamical systems.

In a spline-based approach (e.g., Miyamoto et al. (1996) and
Sciavicco and Siciliano (2007)), we have a series of concatenated
splines, which together form a desired trajectory — third-order
splines or fifth-order splines are among the most popular choices.
Boundary conditions between the individual splines ensure
smooth trajectories with continuous derivatives up to a certain
order, which are determined by the order of the spline polynomial.
Depending on the design principle, the splines can have equal or
different durations. The pros of spline-based trajectory planning
are the ease of use of splines and the compact representation
that consists only of the spline boundary conditions and timing.
Among the main short-comings (Miyamoto et al., 1996; Sciavicco
& Siciliano, 2007) are that between spline nodes, splines can
sometimes create rather complex and undesirable behavior, and
that the explicit time indexing of splines makes it hard to have on-
linemodifications of the spline plan, e.g., in terms of potential fields
due to obstacle avoidance. We included spline-based trajectory
planning as a base-line comparison for our learning algorithms,
as the spline parameters are perfectly suited as a representation
for parameterized movement primitives. In our implementation,
we used third-order splines of equal time duration to span
the desired movement duration. Third-order splines have four
boundary conditions, i.e., position and velocity at each node, and
between splines, the boundary conditions of the ending spline are
the same as those of the starting spline. We chose six splines for
the entire trajectory, resulting in a total of 10 free parameters (the
start and end conditions of the desired trajectory are given).

As an alternative to splines, a dynamical system approach was
suggested in Ijspeert et al. (2002, 2003). The basic principle here
is that a by-design globally stable attractor system automatically
creates a desired trajectory through its unfolding in time. Given
that the dynamical system is autonomous, potential fields can
easily be incorporated to allow for on-line modification of the
desired trajectory, e.g., due to the need of obstacle avoidance.
Additionally, scaling in speed and amplitude of movement is easily
accomplished, derived from a framework of structural equivalence
of dynamical systems. One dynamical system motor primitive
represents a large family of movements, as it is valid for any initial
condition. More details on this approach can be found in Appendix
or in Ijspeert et al. (2002, 2003). The open parameters in the
dynamical systemmotor primitive are the coefficients of a function
approximator with linear parameters (cf. Appendix). As we used
ten basis functions in the function approximator, we obtained 10
free parameters in the motor primitive, i.e., the same number of
free parameters as in the spline approach.

We compared the algorithms (i)–(v) in four different scenarios.
Each of these scenarios consists of the usage of one of the kinematic
plan representations (i.e., splines or motor primitives) and two
different tasks. Each task represents a motor plan in joint space
representedby joint angle q andvelocity q̇. These taskswere chosen
such thatwe can evaluate the different policy gradientmethods for
learning standard motor primitives as they appear frequently in
the motor control literature (Ben-Itzhak & Karniel, in press; Flash
& Hochner, 2005) as well as for applicability in the T-ball task
presented in Section 5.2. The optimal policies for these tasks can be
found in the literature, e.g., in Ben-Itzhak and Karniel (in press) and
Flash and Hochner (2005). In all the experiments in this section,
we used a single Degree-of-Freedom (DoF) scenario for the ease
of illustration. To optimize the performance, we improved every
gradient estimator as much as possible. Therefore each algorithm
has learning rates that were manually chosen to maximize the
performance while not destabilizing the gradient descent. In order
to curb the variance of the gradient estimates, we make use
of the PEGASUS trick (Ng & Jordan, 2000) for the generation
of exploration (i.e., the perturbation of our motor commands is
achieved using the same history of random numbers). All other
settings were optimized in order to make each of these algorithms
as good as possible, e.g., the random perturbation frequency of
the different algorithms is tuned for maximum performance, as
perturbations at too high frequency result in very slow learning,
and perturbations at too low frequency can destabilize motor
control.

The first task is to achieve a goal with a minimum-squared
movement acceleration and a given movement duration, i.e., a
reward of

r(x0:H,u0:H) = −

H/2∑
i=0

c1q̈
2
i −

H∑
i= H

2 +1

c2[(qi − g)2 + q̇2i] (51)

is being optimized, where c1 = 1/100 is the weight of the
transient rewards for the movement duration H/2, while c2 =

1000 is the importance of the final reward, extended over the
time interval [H/2 + 1,H], which insures that the goal state g =

1.0 is reached and maintained properly. The start-state of the
motor primitive is always zero in this toy evaluation. The optimal
movement with respect to this reward is known to be a third-
order polynomial in time, with boundary conditions set according
to the movement start and goal (Ben-Itzhak & Karniel, in press).
We use this analytically optimal solution as a baseline, which is
unachievable for the motor primitives due to the pre-requisite
of smooth acceleration profiles — the third-order spline optimal
solution has discontinuous accelerations at the start and end of the
movement.

In Fig. 2, the task and the different solutions are illustrated. For
the spline representation, all algorithms achieve the same good
result. For the motor primitives, the best solution is a very close
approximation of the analytically optimal solutions. The finite-
differencemethods do not reach this optimal solution but get stuck
in a local minimum.

The second task involves passing through an intermediate point
during the trajectory, while minimizing the squared accelerations,
i.e., we have a similar reward with an additional punishment term
for missing the intermediate point pF at time F given by

r(x0:H,u0:H) = −

H/2∑
i=0

c̃1q̈
2
i −

H∑
i=H/2+1

c̃2[(qi − g)2 + q̇2i]

− c̃3(qF − pF)
2, (52)

where c̃1 = 1, c̃2 = 20, c̃3 = 20 000. The goal has a value of g = 1,
the intermediate point a value of pF = 0.5 at F = 7H/20 and
the start-state was zero. This reward yields a smooth movement
which first passes through the intermediate point before reaching
the goal. This toy experiment is in preparation for hitting a baseball
in the robot experiment below.

In Fig. 3, the second task and the different solutions are
illustrated. Again, we compare against the analytically optimal
solution described by two third-order splines, whose velocity
boundary conditions at the intermediate point are optimized
according to the minimum-squared acceleration cost. As in the
first task, the motor primitives can only approximate this optimal
solution due to smoothness constraints of the acceleration profiles.
The results are very similar as those for the first task: for the
motor primitives, a good approximation of the analytically optimal
solution is achieved by all but the finite-difference method, which
seems to get stuck in local minima. The spline representation
shows no significant differences among the five different learning

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 693
Fig. 2. This figure illustrates the task accomplished in the minimum motor
command learning example. In (a, b), the positions of splines and motor primitives
are shown, in (c, d) the velocities and in (e, f) the accelerations. The cyan
dashed line shows the initial configurations, which is accomplished by straight-
line movement initializations for the splines, and zero parameters for the motor
primitives. The dash-dotted dark blue line shows the analytically optimal solution,
which is unachievable for the motor primitives, but nicely approximated by their
best solution, presented by the red solid line. This best solution is reached by all
learning methods except for the finite-difference method, which gets stuck in a
local minimum — shown as the green dashed line. The wiggly curve in the middle
of the motor primitive acceleration results from the basis function approximation
of this curve with Gaussian basis functions — the number of wiggles corresponds
to the number of basis functions. The spline representation achieves very close to
optimal results for all algorithms. The legend is given in (g). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

methods, but the learned trajectory does not quite coincide with
the optimal solution, as none of the spline nodes corresponded
exactly to the intermediate point pF .

While the trajectory plots do not really distinguish the different
learning algorithms, except for the finite-difference method,
the learning curves demonstrate significant and interesting
differences. In Fig. 4(a) and (b), we show a comparison for the
first task (goal achievement with a minimum-squared motor
command) for both splines and dynamic motor primitives,
respectively. In Fig. 4(c) and (d) we show similar plots for the task
with the intermediate target. These comparisons clearly establish
that both versions of the episodic natural actor-critic methods
outperform both the vanilla policy gradient methods as well as
Fig. 3. This figure illustrates the results when learning to pass through an
intermediate point while having smooth motion. In (a, b), the positions of splines
andmotor primitives are shown, in (c, d) the velocities and in (e, f) the accelerations.
The dashed cyan line shows the initial configurations, which is accomplished by
straight-line movement initializations for the splines, and zero parameters for the
motor primitives. The dash-dotted dark blue line shows the analytically optimal
solution, which is unachievable for the motor primitives, but nicely approximated
by their best solution, presented by the red solid line. This best solution is reached
by all learningmethods except for the finite-differencemethod, which gets stuck in
a local minimum — shown as the green dashed line. The best solution achieved by
learning is presented by the red solid line, which was very close to the analytically
optimal one. The legend is given in (g). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

the finite-differencemethods. The difference between the episodic
natural actor-critic methods with single-offset and the time-
variant additional basis functions is relatively small; however, for
practical tasks this can still make a significant difference. The
time-invariant baseline barely improves over the constant baseline
for the vanilla policy gradients. For finite-difference gradient
methods, it is best not to apply exploration during the trajectory
but only perturb the parameters at the start of the episode.
Otherwise, the gradient estimate is too noisy for any practical
purposes. While this lack of exploration results into an increased
accuracy of the gradient, the lack of stochasticity in the system
results in an increase of plateaus and local minima (Ng & Jordan,
2000; Spall, 2003). This problem could be overcome by collecting
sufficiently many samples with additional stochastic, exploratory

694 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
Fig. 4. This figure shows different experiments with learning motor tasks. In
(a, b), we see how the learning system creates plans for the minimum motor
command cost using both (a) splines and (b) motor primitives. For this problem,
the natural actor-critic methods learns the optimal solution faster by several orders
of magnitude than any of the other methods. In (c, d), the plan has to achieve an
intermediary goal. While the natural actor-critic methods still outperform previous
methods, the gap is lower as the learning problem is easier. Note that these are
double logarithmic plots. Both ‘vanilla’ policy gradient methods and natural ones
achieve the same final solution — just at a different pace. Finite-difference methods
on the other hand often do not attain a similarly good solution as in (a, d).

actions, but at the cost of many more roll-outs. Both vanilla policy
gradient methods and the natural actor-critic methods avoid these
local minima due to the usage of exploratory actions instead of
parameter perturbations.

From the results presented in Fig. 4(a–d), we conclude that
natural actor-critic methods seem to have a significant advantage
for our learning goals, i.e., optimizing the parameters of control
policies.

5.2. Robot application: Motor primitive learning for baseball

In this section, we apply the Episodic Natural Actor-Critic in a
multi-DOF robot motor learning task, using a Sarcos Master Arm.
The task of the robot is to hit a (soft) baseball placed on a T-stick
such that it flies as far as possible — this game is also known as T-
Ball and is used in theUS to teach childrenhow tohit a baseball. The
state of the robot is given by its joint angles and velocities while
the actions are the joint accelerations. A given inverse dynamics
controller is used to obtain motor torques from these kinematic
variables. The ball position and velocity are observed through a
color vision system (Newton Labs, MA) at 60 Hz video frequency.

There are several complex components in this setup. The
ball has to be hit at a proper location and proper angle with
maximal velocity while avoiding to saturate the robot torques
— this is modeled by minimizing the squared motor commands,
i.e., acceleration of the motor primitives. Additionally, the task
has to be distributed appropriately among the seven degrees of
freedom of the robot, which are redundant during the hitting
movement. As each degree of freedomhas a singlemotor primitive
representing its behavior over time, the redundancies require two
implementational simplifications. The first simplification is the
usage of the same randomnumber generator for exploration across
all seven motor primitives. This simplification is well known to
introduce similar exploration over all degrees of freedom and has
been shown to reduce the variance in the gradient estimate (Fu,
2002). It is necessary, as otherwise the exploration noise added
in one DOF will often “fight” the exploration noise of other DOFs,
resulting in very slow learning. Second, we need to cope with
a 70-dimensional Fisher information matrix, which is hard to
stabilize numerically. However, it is a reasonable assumption that
this Fisher information matrix is dominated by its block diagonal
as the parameters of the same motor primitive are more tightly
coupled than between different motor primitives. This results into
treating themotor primitive of eachDOF as if they could be learned
independently, i.e., we do not need to treat all the parameters of
all motor primitives as one big optimization problem. Note that
this approximation of the Fisher information matrix is positive
definite and, thus, inherits all convergence guarantees from the
‘vanilla’ policy gradients while still yielding speeds comparable to
an implementation of the Episodic Natural Actor-Critic without
this simplification. The joint reward signal for eachmotor primitive
for degree of freedom k was

rk(x0:H,u0:H) = +ĉ1px −

H∑
i=0

ĉ2q̈2
k;i (53)

where px denotes the distance of the ball travelled (as estimated
from the equations of a ballistic flight using initial trajectory
captured by the vision system — the scope of the vision system
was zoomed in the area around the ball to obtain high resolution
information and could not see where the ball landed) along the
x-axis while q̈2

k;i punishes high joint accelerations of joint k at time
i, where the weight of each cost component is given by ĉ1 = 1000,
ĉ2 = 1. Note, that for a single DoF this Eq. (53) would be a
more abstract version of Eq. (52). As policy gradient methods are
local learning methods, we cannot expect to learn this complex,
high-dimensional behavior in a short time unless we initialize the
motor primitives with some prior knowledge. For motor control,

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 695
(a) Performance. (b) Imitation learning. (c) Initial reproduction. (d) After reinforcement
learning.

Fig. 5. This figure shows (a) the average of the reward, Eq. (53), over all DoFs of the baseball swing task when using the motor primitives for learning. In (b), the learning
system is initialized by imitation learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after several hundred episodes exhibiting a nicely learned
batting, which achieves about 5 m distance of the ball flight.
a suitable approach is to first imitate a teacher and, subsequently,
improve by trial and error. This setup mimics how children learn
how to a hit a baseball where first the parent presents and,
subsequently, the child improves on its own. Similarly, we use the
one-shot supervised learning setup12 presented in Ijspeert et al.
(2002, 2003) to teach the robot a rudimentary T-ball stroke as can
be seen in Fig. 5(b); however, it fails to reproduce the behavior as
shown in (c) due to control inaccuracies of the robot; subsequently,
we improve the accuracy of the hitting angle using the episodic
Natural Actor-Criticwhich yields the performance shown in (a) and
the behavior in (d). After approximately 200–300 trials, the ball can
be hit properly by the robot.

6. Conclusion & discussion

We have presented an extensive survey of policy gradient
methods. While some developments needed to be omitted as they
are only applicable for very low-dimensional state-spaces, this
paper largely summarized the state of the art in policy gradient
methods as applicable in robotics with high degree-of-freedom
movement systems. All the three major ways of estimating first-
order gradients, i.e., finite-difference gradients, vanilla policy
gradients and natural policy gradients are discussed in this paper
and practical algorithms are given.

One of the presented classes of algorithms, the Natural Actor-
Critic algorithms was developed for this paper. This class of
algorithms has been widely accepted by now and has been applied
in a variety of settings (Guenter, Hersch, Calinon, & Billard, in
press; Mori et al., 2004; Mori, Nakamura, & Ishii, 2005; Nakamura
et al., 2004; Park, Kim, & Kang, 2005; Richter, Aberdeen, & Yu,
2007; Sato et al., 2002; Ueno et al., 2006). The Natural Actor-
Critic is considered the “Current method of choice” (Aberdeen,
2006) among the policy gradient methods in the reinforcement
learning community. It also allows the derivation of several
previously presented algorithms in the literature and has very
useful theoretical properties (Peters, 2007).

The experiments presented here show that the time-variant
episodic natural actor-critic is the preferred method among the
presentedmethodswhen applicable; however, if a policy cannot be
differentiated with respect to its parameters, the finite-difference
methodsmaybe the onlymethod applicable. The example ofmotor
primitive learning for baseball underlines the efficiency of natural
gradient methods for complex movement systems.
12 This setup first extracts the duration of the desired movement and adjusts all
time constants of the motor primitives. Based on the resulting dynamical systems,
it computes the targets for the a locally weighted regression performed based on
LWPR. See Ijspeert et al. (2002, 2003) for all details on this approach.
Appendix. Motor primitive equations

The motor primitives from Ijspeert et al. (2002, 2003) in their
most recent reformulation are given by a canonical system

τ−1v̇ = αv (βv (g − x) − v) , (A.1)

τ−1ẋ = v, (A.2)

which represents the phase of the motor process. It has a goal g,
a time constant τ and some parameters αv,βv which are chosen
so that the system is stable. Additionally, we have a transformed
system

τ−1ż = αz (βz (s − x) − v) + f (x, v, g) , (A.3)

τ−1ẏ = z, (A.4)

τ−1 ṡ = αs (g − s) , (A.5)

which has the same time constant τ as the canonical system,
appropriately set parameters αz,βz,αs, and a transformation
function f (x, v, g). The transformation function transforms the
output of the canonical system so that the transformed system can
represent complex nonlinear patterns and is given by

f (x, v, g) =

N∑
i=1
ψi (x) θiv

N∑
i=1
ψi (x)

, (A.6)

where θi are adjustable parameters and it has localization weights
defined by

ψi (x) = exp
(
−hi

(
x − x0
g − x0

− ci

)2
)

(A.7)

with offset x0, centers ci and width hi.

References

Aberdeen, D. (2006). POMDPs and policy gradients, presentation at the Machine
Learning Summer School (MLSS).

Aleksandrov, V., Sysoyev, V., & Shemeneva, V. (1968). Stochastic optimization.
Engineering Cybernetics, 5, 11–16.

Amari, S. (1998). Natural gradient works efficiently in learning.Neural Computation,
10, 251.

Atkeson, C. G. (1994). Using local trajectory optimizers to speed up global
optimization in dynamic programming. In J. E. Hanson, S. J. Moody, &
R. P. Lippmann (Eds.), Advances in neural information processing systems 6
(pp. 503–521). Morgan Kaufmann.

Bagnell, J., & Schneider, J. (2003). Covariant policy search. In Proceedings of the
international joint conference on artificial intelligence (pp. 1019–1024).

Baird, L. (1993). Advantage updating. Technical Report WL-TR-93-1146. Wright
laboratory, Wright–Patterson air force base. OH.

Balasubramanian, V. (1997). Statistical inference, occam’s razor, and statistical
mechanics on the space of probability distributions. Neural Computation, 9(2),
349–368.

696 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697
Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics SMC, 13(5), 115–133.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15, 319–350.

Baxter, J., Bartlett, P., &Weaver, L. (2001). Experimentswith infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research, 15, 351–381.

Ben-Itzhak, S., & Karniel, A. (2008).Minimumacceleration criterionwith constraints
implies bang–bang control as an underlying principle for optimal trajectories of
arm reaching movements. Neural Computation, 20(3), 779–812.

Benbrahim, H., Doleac, J., Franklin, J., & Selfridge, O. (1992). Real-time learning:
A ball on a beam. In Proceedings of the international joint conference on neural
networks (pp. 92–103).

Benbrahim, H., & Franklin, J. (1997). Biped dynamic walking using reinforcement
learning. Robotics and Autonomous Systems, 22, 283–302.

Berny, A. (2000). Statistical machine learning and combinatorial optimization.
In Lecture notes in natural computing: Vol. 33 (pp. 287–306). Heidelberg,
Germany: Springer-Verlag.

Dyer, P., & McReynolds, S. R. (1970). The computation and theory of optimal control.
New York, NY: Academic Press.

Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., & Cheng, G. (2005). Learning
cpg sensory feedback with policy gradient for biped locomotion for a full-body
humanoid. In Proceedings of the national conference on artificial intelligence (pp.
1267–1273).

Flash, T., & Hochner, B. (2005). Motor primitives in vertebrates and invertebrates.
Current Opinions in Neurobiology, 15, 660–666.

Fletcher, R., & Fletcher, R. (2000). Practical methods of optimization. New York, NY:
John Wiley & Sons.

Fu, M. C. (2002). Feature article: Optimization for simulation: Theory vs. practice.
INFORMS Journal on Computing, 14(3), 192–215.

Glynn, P. (1987). Likelihood ratio gradient estimation: An overview. In Proceedings
of the winter simulation conference (pp. 366–375).

Glynn, P. (1990). Likelihood ratio gradient estimation for stochastic systems.
Communications of the ACM, 33(10), 75–84.

Greensmith, E., Bartlett, P., & Baxter, J. (2001). Variance reduction techniques for
gradient estimates in reinforcement learning. Advances in Neural Information
Processing Systems, 14(34).

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning
Research, 5, 1471–1530.

Guenter, F., Hersch, M., Calinon, S., & Billard, A. (2007). Reinforcement learning for
imitating constrained reaching movements. In Imitative Robots [Special issue].
RSJ Advanced Robotics, 21, 1521–1544.

Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning
real-valued functions. Neural Networks, 3(6), 671–692.

Gullapalli, V. (1992). Learning control under extreme uncertainty. In Advances in
neural information processing systems (pp. 327–334).

Gullapalli, V., Franklin, J., & Benbrahim, H. (1994). Aquiring robot skills via
reinforcement learning. IEEE Control Systems Journal, Special Issue on Robotics:
Capturing Natural Motion, 4(1), 13–24.

Harville, D. A. (2000). Matrix algebra from a statistician’s perspective. Heidelberg,
Germany: Springer Verlag.

Hasdorff, L. (1976). Gradient optimization and nonlinear control. New York, NY: John
Wiley & Sons.

Ijspeert, J.A., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear
dynamical systems in humanoid robots. In Proceedings of IEEE international
conference on robotics and automation (pp. 1398–1403).

Ijspeert, A., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for
learning motor primitives. In S. Becker, S. Thrun, & K. Obermayer (Eds.),
Advances in neural information processing systems: Vol. 15 (pp. 1547–1554).
Cambridge, MA: MIT Press.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dynamic programming. New York,
NY: American Elsevier Publishing Company, Inc.

Kakade, S. (2001). Optimizing average reward using discounted rewards. In
Proceedings of the conference on computational learning theory (pp. 605–615).

Kakade, S. A. (2002). Natural policy gradient. In Advances in neural information
processing systems: Vol. 14 (pp. 1531–1538). CA: Vancouver.

Kakade, S.M. (2003). On the sample complexity of reinforcement learning. Ph.D.
thesis, Gatsby computational Neuroscience Unit. University College London,
London, UK.

Kimura, H., & Kobayashi, S. (1997). Reinforcement learning for locomotion of a two-
linked robot arm. In Proceedings of the Europian workshop on learning robots (pp.
144–153).

Kimura, H., & Kobayashi, S. (1998). Reinforcement learning for continuous action
using stochastic gradient ascent. In Proceedings of the international conference
on intelligent autonomous systems (IAS): Vol. 5 (pp. 288–295).

Kleinman, N., Spall, J., & Naiman, D. (1999). Simulation-based optimization
with stochastic approximation using common random numbers. Management
Science, 45, 1570–1578.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE international conference on
robotics and automation (pp. 2619–2624).

Konda, V., & Tsitsiklis, J. (2000). Actor-critic algorithms. Advances in Neural
Information Processing Systems, 12.

Lawrence, G., Cowan, N., & Russell, S. (2003). Efficient gradient estimation formotor
control learning. In Proceedings of the international conference on uncertainty in
artificial intelligence (pp. 354–361).
Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., & Hagita, N. (2005). Robot behavior
adaptation for human-robot interaction based on policy gradient reinforcement
learning. In Proceedings of the IEEE/RSJ international conference on intelligent
robots and systems (pp. 1594–1601).

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., & Osu, R. et al. (1995). A
kendama learning robot based on a dynamic optimization theory. In Proceedings
of the IEEE international workshop on robot and human communication (pp.
327–332).

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., & Rieka, O. et al. (1996).
A kendama learning robot based on a dynamic optimization principle. In
Proceedings of the international conference on neural information processing (pp.
938–942).

Moon, T., & Stirling, W. (2000). Mathematical methods and algorithms for signal
processing. Upper Saddle River, NJ: Prentice Hall.

Mori, T., Nakamura, Y., aki Sato, M., & Ishii, S. (2004). Reinforcement learning for
cpg-driven biped robot. In Proceedings of the national conference on artificial
intelligence (pp. 623–630).

Mori, T., Nakamura, Y., & Ishii, S. (2005). Efficient sample reuse by off-policy natural
actor-critic learning. In Advances in neural information processing systems (NIPS
’05 workshop presentation).

Morimoto, J., & Atkeson, C. A. (2003). Minimax differential dynamic programming:
an application to robust biped walking. In S. Becker, S. Thrun, & K. Obermayer
(Eds.), Advances in neural information processing systems 15 (pp. 1539–1546).
Cambridge, MA: MIT Press.

Nakamura, Y., Mori, T., & Ishii, S. (2004). Natural policy gradient reinforcement
learning for a CPG control of a biped robot. In Proceedings of the international
conference on parallel problem solving from nature (pp. 972–981).

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004).
Learning from demonstration and adaptation of biped locomotion. Robotics and
Autonomous Systems, 47(2–3), 79–91.

Ng, A.Y., & Jordan, M. (2000). PEGASUS: A policy search method for large MDPs and
POMDPs. In Proceedings of the international conference on uncertainty in artificial
intelligence (pp. 406–415).

Park, J., Kim, J., & Kang, D. (2005). An RLS-based natural actor-critic algorithm for
locomotion of a two-linked robot arm. In Y. Hao, J. Liu, Y.Wang, Y. ming Cheung,
H. Yin, L. Jiao, J. Ma, & Y.-C. Jiao (Eds.), Lecture notes in computer science: Vol.
3801. Proceedings of the international conference on computational intelligence
and security (CIS) (pp. 65–72). Xi’an, China: Springer.

Peters, J. (2005). Machine learning of motor skills for robotics. Technical Report CS-
05-867. University of Southern California, Los Angeles, CA.

Peters, J. (2007).Machine learning ofmotor skills for robotics. Ph.D. thesisUniversity
of Southern California, Los Angeles, CA, 90089, USA.

Peters, J., & Schaal, S. (2006). Policy gradient methods for robotics. In Proceedings
of the IEEE/RSJ international conference on intelligent robots and systems (pp.
2219–2225).

Peters, J., Vijayakumar, S., & Schaal, S. (2003). Reinforcement learning for humanoid
robotics. In Proceedings of the IEEE-RAS international conference on humanoid
robots (HUMANOIDS) (pp. 103–123).

Peters, J., Vijayakumar, S., & Schaal, S. (2005a). Natural actor-critic. In Proceedings of
the European machine learning conference (pp. 280–291).

Peters, J., Vijayakumar, S., & Schaal, S. (2005b). Natural actor-critic. In Proceedings of
the European conference on machine learning (pp. 280–291). Springer.

Pongas, D., Billard, A., & Schaal, S. (2005). Rapbid synchronization and accurate
phase-locking of rhythmic motor primitives. In Proceedings of the IEEE
international conference on intelligent robots and systems (IROS 2005): Vol. 2005
(pp. 2911–2916).

Richter, S., Aberdeen, D., & Yu, J. (2007). Natural actor-critic for road traffic
optimisation. In B. Schoelkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural
information processing systems: Vol. 19. Cambridge, MA: MIT Press, p. Online
Preproceedings.

Sadegh, P., & Spall, J. (1997). Optimal random perturbations for stochastic
approximation using a simultaneous perturbation gradient approximation. In
Proceedings of the american control conference (pp. 3582–3586).

Sato, M., Nakamura, Y., & Ishii, S. (2002). Reinforcement learning for biped
locomotion. In Lecture notes in computer science, Proceedings of the international
conference on artificial neural networks (ICANN) (pp. 777–782). Springer-Verlag.

Schaal, S. (1997). Learning from demonstration. In M. Mozer, M. Jordan, & T.
Petsche (Eds.), Advances in neural information processing systems (NIPS): Vol. 9
(pp. 1040–1046). Cambridge, MA: MIT Press.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2004). Learning movement
primitives. In Springer tracts in advanced robotics, International symposium on
robotics research (ISRR2003) (pp. 561–572). Ciena, Italy: Springer.

Sciavicco, L., & Siciliano, B. (2007). Modeling and control of robot manipulators.
Heidelberg, Germany: MacGraw-Hill.

Spall, J. C. (2003). Introduction to stochastic search and optimization: Estimation,
simulation, and control. Hoboken, NJ: Wiley.

Su, F., & Gibbs, A. (2002). On choosing and bounding probability metrics.
International Statistical Review, 70(3), 419–435.

Sutton, R. S., McAllester, D., Singh, S., &Mansour, Y. (2000). Policy gradient methods
for reinforcement learningwith function approximation. In S. A. Solla, T. K. Leen,
& K.-R. Mueller (Eds.), Advances in neural information processing systems (NIPS)
(pp. 1057–1063). Denver, CO: MIT Press.

Tedrake, R., Zhang, T.W., & Seung, H.S. (2005). Learning to walk in 20 min. In
Proceedings of the Yale workshop on adaptive and learning systems (pp. 10–22).
Yale University, New Haven, New Haven, CT.

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 697
Ueno, T., Nakamura, Y., Takuma, T., Shibata, T., Hosoda, K., & Ishii, S. (2006). Fast
and stable learning of quasi-passive dynamic walking by an unstable biped
robot based on off-policy natural actor-critic. In Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems (pp. 5226–5231).

Vachenauer, P., Rade, L., & Westergren, B. (2000). Springers Mathematische Formeln:
Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswis-
senschaftler. Heidelberg, Germany: Springer-Verlag.

Wada, Y., & Kawato, M. (1994). Trajectory formation of arm movement by a neural
network with forward and inverse dynamics models. Systems and Computers in
Japan, 24, 37–50.
Weaver, L., & Tao, N. (2001a). The optimal reward baseline for gradient-based
reinforcement learning. In: Proceedings of the international conference on
uncertainty in artificial intelligence (pp. 538–545). Vol. 17. Seattle, Washington.

Weaver, L., & Tao, N. (2001b). The variance minimizing constant reward baseline for
gradient-based reinforcement learning. Technical Report 30. Australian National
University (ANU).

Werbos, P. (1979). Changes in global policy analysis procedures suggested by new
methods of optimization. Policy Analysis and Information Systems, 3(1).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning.Machine Learning, 8(23).

	Reinforcement learning of motor skills with policy gradients
	Introduction
	General assumptions and problem statement
	Motor primitive policies

	Policy gradient approaches for parameterized motor primitives
	Finite-difference methods
	Likelihood ratio methods and REINFORCE

	`Vanilla' policy gradient approaches
	Policy gradient theorem and G(PO)MDP
	Optimal baselines
	Compatible function approximation

	Natural Actor-Critic
	Motivation
	Connection to the compatible function approximation
	Natural actor-critic algorithms
	Episodic natural actor-critic
	Episodic natural actor-critic with a time-variant baseline

	Empirical evaluations
	Comparing policy gradient methods on motor primitives
	Robot application: Motor primitive learning for baseball

	Conclusion & discussion
	Motor primitive equations
	References

